- A+
阿氏圆定理,阿波罗尼斯圆的四种性质?
看阿波罗尼斯圆的四种性质
阿波罗尼斯(Apollonius)圆,简称阿氏圆。
定义 在平面上给定相异两点A、B,设P点在同一平面上且满足PA/PB= λ, 当λ>0且λ≠1时,P点的轨迹是个圆,这个圆我们称作阿波罗尼斯圆。这个结论称作阿波罗尼斯轨迹定理。
设M、N分别为线段AB按定比λ分割的内分点和外分点,则MN为阿波罗尼斯圆的直径,且MN=[2λ/(λ^2-1)]AB。
证明 我们可以通过公式推导出AN的长度:AN:BN=AP:BP ,其中BN=AN+AB,所以AN:(AN+AB)=AP:BP=>AN=AP×AB÷(BP-AP),以NP为直径的圆就是我们所求的轨迹圆。
性质 由阿波罗尼斯圆可得阿波罗尼斯定理,即: 设三角形的三边和三中线分别为a、b、c、ma(a为下标,下同)、mb、mc,则有以下关系: b^2+c^2=a^2/2+2ma^2; c^2+a^2=b^2/2+2mb^2; a^2+b^2=c^2/2+2mc^2。
研究数学模型真的能提高解题速度和正确率吗?
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。纵观近几年全国各地的中考,都加大了这方面的考查力度,特别是2018年中考,这一部分的分值比前两年大幅度提高。
为帮助大家把握好这部分知识,今天我们专门来讲讲旋转。
旋转的定义
常见的几种模型
旋转类型题目举例
1、正三角形类型
在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转60°,使得AB与AC重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP CP中,此时ΔP AP也为正三角形。
例1如图(1-1),设P是等边ΔABC内的一点,PA=3, PB=4,PC=5,∠APB的度数是________.
2、正方形类型
在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP 中,此时ΔBPP 为等腰直角三角形。
例2 如图(2-1),P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。求正方形ABCD面积。
3、等腰直角三角形类型
在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。经过这样旋转变化,在图(3-1-b)中的一个ΔP CP为等腰直角三角形。
例3如图,在ΔABC中,∠ACB =90°,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。求∠BPC的度数。
总结:
旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。
阿氏圆符号?
阿波罗尼斯(Apollonius)圆,简称阿氏圆。
在平面上给定相异两点A、B,设P点在同一平面上且满足PA/PB= λ, 当λ>0且λ≠1时,P点的轨迹是个圆,这个圆我们称作阿波罗尼斯圆。这个结论称作阿波罗尼斯轨迹定理。设M、N分别为线段AB按定比λ分割的内分点和外分点,则MN为阿波罗尼斯圆的直径,且MN=[2λ/(λ^2-1)]AB。 证明
我们可以通过公式推导出AN的长度:AN:BN=AP:BP ,其中BN=AN+AB,所以AN:(AN+AB)=AP:BP=>AN=AP×AB÷(BP-AP),以NM为直径的圆就是我们所求的轨迹圆。 由阿波罗尼斯圆可得阿波罗尼斯定理,即:
设三角形的三边和三中线分别为a、b、c、ma(a为下标,下同)、mb、mc,则有以下关系: b^2+c^2=a^2/2+2ma^2; c^2+a^2=b^2/2+2mb^2; a^2+b^2=c^2/2+2mc^2。
(此定理用余弦定理和勾股定理可以证明)。 相关知识
1.到两定点的距离之商为定值的点的轨迹是阿波罗尼斯圆。 2.到两定点的距离之和为定值的点的轨迹是椭圆。 3.到两定点的距离之差为定值的点的轨迹是双曲线。 4.到两定点的距离之积为定值的点的轨迹是卡西尼卵形线。
阿氏圆定理公式?
阿氏圆是阿波罗尼斯圆的简称,已知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆。
阿氏圆是阿波罗尼斯圆的简称,已知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆。这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。
扩展资料:
应用:可知阿氏圆上任意一点Р到点A和点B的距离比都是定值k,那么在证明过程中可以用这个原理,就是说如果我们知道了圆上一点到直径上两定点的距离比,那么就可以知道圆上另一点到两定点的距离比。
阿氏圆结论?
阿波罗尼斯圆又称阿氏圆,已知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。
在平面上给定相异两点A、B,设P点在同一平面上且满足PA/PB= λ, 当λ>0且λ≠1时,P点的轨迹是个圆,这个圆我们称作阿波罗尼斯圆。这个结论称作阿波罗尼斯轨迹定理。设M、N分别为线段AB按定比λ分割的内分点和外分点,则MN为阿波罗尼斯圆的直径,且MN=[2λ/(λ^2-1)]AB。
归纳到一般结论
此时以AB中点为原点O建立直角坐标系,向量AB方向为X轴正方向,AB中垂线则为Y轴。
设A点为(-t,0),B点坐标(t,0)
圆心坐标应为((λ^2*t+t)/(λ^2-1),0);
圆方程为:(x-(λ^2*t+t)/(λ^2-1))^2+y^2=(MN/2)^2
(MN/2)^2=r^2=[(λ^2*t+t)/(λ^2-1)]^2-t^2
只需代入λ与t的具体数值即可,具体问题具体分析
若对于同一A、B,令PA/PB比值乘积为1的两个轨迹,关于线段AB的中垂线对称。
- 我的微信公众号
- 扫一扫关注
-
- 我的新浪微博号
- 扫一扫关注
-