- A+
tanda,北美黑樱桃木和黑酸枝哪种好?
北美黑樱桃木和黑酸枝哪种家木家具好?关于这个问题,作为从业家具行业20多年的我来说,首先定作者问题错了,北美没有黑樱桃木,只有红樱桃,还有黑胡桃木和红胡桃木!在此我们把美国樱桃叫北美樱桃,北美樱桃木家具好不好,它有什么优缺点?,今天就带您了解下樱桃木家具的选购事宜。
1、樱桃木是高级木料,主要分布于美国东部,所以常见家具中说的樱桃木,基本都是进口木材,樱桃木的心材颜色由艳红色至棕红色,所以好的樱桃木家具的颜色非常漂亮,樱桃木天生含有棕色树心斑点和细小的树胶窝,纹理细腻、清晰、抛光性好,涂装效果好;
2、樱桃木材质深红色至淡红棕色纹理通直细纹狭棕色髓斑及微树胶囊结构细平均密度580kg/立米比重0.58木材弯曲性能硬度低强度等耐冲击载荷加工性:木材易于手工加工或机加工刀具磨损程度低握钉力、胶着力、抛光性 干燥尚算快速,干燥收缩量颇,烘干尺寸稳定做拼花板、烟斗、乐器、家具橱柜、高级细木工件、船用内装饰;特别适宜用制作车件或雕刻件精选原木用制造家具饰面单板、橱柜饰面单板、护墙板光面门等
3、樱桃木家具的优点 :樱桃木家具弯曲性能很好,抗弯强度与冲击强度中等,硬度稍低,因为樱桃木家具具有独特的物理特性,所以在家中不易生虫,而且樱桃木做出来的家具大气、高贵,所以在家中会非常显得有档次。
4、樱桃木家具的缺点 樱桃木家具相对于其他普通实木,在价格上比较贵,而且新做的樱桃木家具木质粗糙,木丝会容易开裂,因为干燥时间比较快,所以在干燥后收缩比较大,容易产生变形,但是干燥后的稳定性很高,不易变形。
5、 樱桃木家具的选购和鉴别 樱桃木细腻文雅,价格昂贵。最好的樱桃木出自北美,木制带黑点的矿物质,所以在选择商家说是北美樱桃木家具是需要鉴别真伪,而且在市面上很多樱桃木家具是有西南桦来冒充的,鉴别的时候主要是看颜色和斑点,樱桃木家具内部有黑色斑点,西南桦没有,而在颜色上樱桃木家具颜色偏黄,而西南桦家具偏红。
黑酸枝家具的材质和种类
一、 黑酸枝木为豆科植物中蝶形花亚科黄檀属植物,主要产地为热带、亚热带地区以及东南亚国家。木材材色不均匀,心材橙色,浅红褐色至黑褐色,深色条文明显。木材有光泽,具酸味或酸香味,文理斜而交错,密度高、含油腻,坚硬耐磨。
二、黑酸枝木类共有八种树收入国标红木。即刀状黑黄檀、黑黄檀、阔叶黄檀、卢氏黑黄檀、东非黑黄檀、巴西黑黄檀、亚马孙黑黄檀和伯利兹黑黄檀。
黑酸枝还包括以下几种木种,其木质构造特征分别是:
1、刀状黑黄檀 Dalbergia cultrate Grah
散孔材。生长轮不明显或略明显。心材新切面紫黑或紫红褐,常带深褐或栗褐色条纹。管孔在肉眼下略见,弦向直径最大182μm,平均118μm;数甚少至略少,o~12个/mm2。轴向薄壁组织较多,在肉眼下明显,主为同心层式波浪形,傍管带状及细线状。木纤维壁厚。木射线在肉眼下不见;波痕在放大镜下可见;射线组织同形单列。及多列(多数2~3列)。新切面有酸香气;结构细;纹理颇直;气干密度0.89-1.14g/cm3。
2、黑黄檀Dalbergia fusca pierre
散孔材。生长轮不明显或略明显。心材新切面紫褐、黑褐或栗褐,常带明显的紫或黑褐色窄条纹。管孔在肉眼下略见,弦向直径最大275 μm,平均143μm;含黑色树胶;数甚少至略少,1~6个/mm2。轴向薄壁组织颇明显,主为同心层式窄带状(宽2~数个细胞)。木纤维壁甚厚。木射线在放大镜下明显;波痕亦然;射线组织同形单列及多列(多数2~4列)。无酸香气或很微弱;结构细;纹理斜或交错;气干密度1.04~1.20g/cm3。
3、阔叶黄檀Dalbergia latifolia Roxb
散孔材,生长轮不明显或略明显。心材浅金褐、黑褐、紫褐或深紫红,常有较宽但相距较远的紫黑色条纹;木屑酒精浸出液有明显紫色调。管孔在肉眼下明显,含树胶;弦向直径最大267μm,平均144μm;数少至略少,3~17个/17个mm2。轴向薄壁组织颇明显,主为环管束状、聚翼状及波浪形窄带状。木纤维壁薄至略厚。木射线在放大镜下可见;波痕亦然;射线组织同形单列(甚少)及多列(2列),稀异形孟型。新切面有酸香气;结构细(较其他种略粗);纹理交错;气干密度0.75~1.04 g/cm3,多数0.82~0.86 g/cm3。
4、卢氏黑黄檀Dalbergia louvelii R.Viguier
散孔材。生长轮不明显。心材新切面桔红色,久则转为深紫或黑紫。管孔在肉眼下几不得见;弦向直径最大206μm,平均149μm;数少至少,1~4个/mm2。轴向薄壁组织在放大镜下明显,主为同心层型的细线(宽1~2细胞),且排列规整。木纤维壁厚。木射线放大镜下可见;波痕不明显;射线组织同形单列。酸香气微弱;结构甚细至细;纹理交错;有局部卷曲;气干密度0.95 g/cm3。
5、东非黑黄檀Dalbergia melanoxylon Guill.£Perr
散孔材。生长轮不明显。心材黑褐至黄紫褐,常带黑色条纹。管孔在肉眼下可见,弦向直径最大133μm;平均72μm;数少至略少,5~14个/mm2。轴向薄壁组织较少,在肉眼下通常不见,主为离管型,星散聚合、细线状及聚翼状。木纤维壁甚厚。木射线放大镜下可见,波痕亦然,射线组织同形单列及多列(2列)。无酸香气或很微弱;结构甚细;纹理通常直;气干密度1.00~1.33 g/cm3。
6、巴西黑黄檀 Dalbergia nigra Fr.Allem
散孔材。生长轮明显。心材黑褐、巧克力色至紫褐色,常带有明显的黑色窄条纹。管孔在肉眼下颇明显,弦向直径最大287μm,平均143μm;数甚少至略少,2~7个/mm2。轴向薄壁组织放大镜下明显。主为离管型,环管束状及窄带状(宽1~2细胞),星散聚合、聚翼状,常多于微凹黄檀。木纤维壁薄至厚。木射线在放大镜下明显,波痕在放大镜下明显,射线组织同形单列(数少)及多列(多数2~3列),异形Ⅲ型倾向明显。新切面酸香气浓郁,结构细(较其他种略粗),纹理交错,气干密度O.86~1.01 g/cm3。
7、亚马孙黄檀Dalbergia spruceana Benth
散孔材。生长轮明显。心材红褐、深紫灰褐,常带黑色条纹。管孔在肉眼下可见,弦向直径最大323μm,平均1 92μm;数甚少至少,1~5个/mm2。轴向薄壁组织在放大镜下明显,细线状(宽多数1细胞),环管束状明显。木纤维壁甚厚。木射线在放大镜下可见;波痕不明显;射线组织同形单列及多列(多数2列)。酸香气无或很微弱;结构细;纹理直至略交错;气干密度O.90 g/cm3。
8、伯利兹黄檀Dalbergia stevensonii Tandl
散孔材,半环孔材倾向明显。生长轮明显。心材浅红褐、黑褐或紫褐,常带规则或不规则相间的黑色条纹,色泽比较均匀。管孔在肉眼下明显,弦向直径最大269μm,平均88μm;数略少至略多,11~24个/mm2。轴向薄壁组织在肉眼下略明显,主为窄带状及细线状(多数宽1细胞,与射线交叉局部略呈网状)及环管束状。木纤维壁厚。木射线在放大镜下略见;波痕在放大镜下可见(木射线迭生构造不明显);射线组织同形单列及多列。酸香气无或很微弱;结构细;纹理直;气干密度0.93~1.1 9 g/cm3。
三、特点及价值
黑酸枝仅次于紫檀和黄花梨
1、木质结构较细,纹理很清晰,制作出来的家具坚固耐用,历经百年而不变形,因此在明清时代应用比较广泛。由于黑酸枝木资源稀少,生长缓慢,几百年方能成材,因此这种木材非常具有收藏价值。由于红木家具市场的发展,黑酸枝是 业内人士最为看好红木原材之一,备受大众收藏者的喜爱。
2、黑酸枝家具多采用榫卯结构,稳固耐用,在设计上基本保持中国传统的设计理念,在此基础上融入现代人体工学和审美需求,因此不仅古色古香,而且还散发出现代时尚的魅力。黑酸枝家具多以明清风格为主,有的结构简约,风格明快,线条流畅,有的雕刻精美,结构厚重,不管是哪种风格都保持黑酸枝特有的木制纹理,非常的漂亮, 渗透出醇厚含蓄之美,仿佛层峦叠嶂的群山,抑或波澜起伏的大海,微风轻轻吹过,泛起层层涟漪,令人无限遐想。这就是黑酸枝家具独特的魅力所在,是打造典雅中式家居生活的不二之选。名鼎檀红木家具是我国首家系列化生产黑酸枝家具的品牌,该品牌精细选材,专用大料,精雕细琢,工艺精湛,精益求精,超越国标。沿用中国传统的榫卯结构和中国生漆,并结合现代工艺手法,经过100多道工序精雕细刻而成,不仅结构稳固,经久耐用,而且典雅美观,极富古典檀韵。
3、黑酸枝的升值空间
据资料显示,近年来随着黄花梨市场存量的急剧稀缺,由于砍伐严重,黑酸枝原材料目前也正在急剧减少,不难预料,未来五至八年内,黑酸枝将同今天的黄花梨一样断层。黑酸枝的收藏价值和升值潜力主要体现在:
其一,黑酸枝与海南黄花梨和紫檀[3]同属高档红木,是明清时期宫廷家具的主要用材;
其二,黑酸枝资源同样有限,未来几年同样会出现稀缺断层;
其三,目前,黑酸枝的价格是仅是紫檀的五分之一,是海南黄花梨的八十分之一。因此,黑酸枝未来上涨空间巨大,将是红木投资收藏最值得出手的潜力股。
四、黑酸枝家具的优缺点
1、黑酸枝木料的优点:
黑酸枝仅次于紫檀和黄花梨,木质结构较细,纹理很清晰,制作出来的家具坚固耐用,历经百年而不变形,因此在明清时代应用比较广泛。
而如今,黑酸枝家具仍然具有很高的价值。黑酸枝家具多采用榫卯结构,稳固耐用,在设计上基本保持中国传统的设计理念,在此基础上融入现代人体工学和审美需求,因此不仅古色古香,而且还散发出现代时尚的魅力。
黑酸枝家具多以明清风格为主,有的结构简约,风格明快,线条流畅,有的雕刻精美,结构厚重,不管是那种风格都保持黑酸枝特有的木制纹理,非常的漂亮,仿佛层峦叠嶂的群山,抑或波澜起伏的大海,微风轻轻吹过,泛起层层涟漪,令人无限遐想。这就是黑酸枝家具独特的魅力所在。
2、黑酸枝木料的缺点:
①、因为产量较少,所以很难有优质树种,质量参差不齐。
②、纹路与年轮不清晰,视觉效果不够清新。
③、材质较重,不容易搬运。
④、材质较硬,加工难度高,而且容易出现开裂的现象。
⑤、材质比较油腻,高温下容易返油。
所以从上所诉,如果你是想做有价植的家具,你选择黑酸枝,如果你想装饰看,轻柔细腻,你选择红樱桃家具!总之一句话,看你自己的喜爱和消费程度和你想要的价质,因为两种材质都不错!象我来说,我选择的是红樱桃。
减肥的时候是先减皮下脂肪还是内脏上的脂肪呢?
一、人体脂肪的消耗有明确的位置优先级:优先消耗内脏脂肪与许多自媒体说的不太一样,人体的脂肪消耗并不是全身均匀的。虽然有少数研究得出减肥时消耗的内脏脂肪比皮下脂肪少[1][2],但大多数研究指出『减肥过程中内脏脂肪比皮下脂肪消耗更多』。
Kelley等人2004年在权威期刊《Diabetes Care》上发表了一篇论文,针对39名肥胖的2型糖尿病患者(平均体重100kg,平均BMI35)进行减肥实验(节食+药物),26周受试者们减去的内脏脂肪(26%)明显高于皮下脂肪(15%)[3]。
原文截图
查了下《Diabetes Care》的因子高达18.1,1区的,比较可信。
查询页面
Ross等人2004年招募了54名肥胖妇女(平均腰围110CM,平均BMI32),其中15人采用节食减肥,17人运动减肥[4]。结果节食减肥组减去的内脏脂肪(20.8%)比腹部皮下脂肪(8.9%)更多;运动组减的内脏脂肪(30%)也比皮下脂肪多(16.9%)。
Subcuttaneous fat是皮下脂肪,visceral fat是内脏脂肪
除了这两个,还有大量关于节食的研究,都支持上述结论:
Weinser等人2001年:23名肥胖女性,26周减去内脏脂肪40.7%、皮下脂肪%33.1[5];Gower等人2002年:19名肥胖女性,26周减去内脏脂肪38.5%、皮下脂肪30.3%[6];Pascuali等人2000年:10名肥胖女性,4周减去内脏脂肪8.3%、皮下脂肪6.5%[7];Alvarez等人2005年:6名肥胖男性,13周减去内脏脂肪23.9%、皮下脂肪%17.7[8];Rice等人1999年:9名肥胖男性,16周减去内脏脂肪35%、皮下脂肪25%[9];Weits等人1989年:20名肥胖女性,12周减去内脏脂肪15.1%、皮下脂肪10.6%[10];Okura等人2002年:14名肥胖女性,14周减去内脏脂肪40%、皮下脂肪28%[11];Fujioka等人1991年:26名肥胖女性,8周减去内脏脂肪33.3%、皮下脂肪22.6%[12];Janssen等人1999年:13名肥胖女性,16周减去内脏脂肪28.6%、皮下脂肪18.8%[13];Tchernof等人2002年:25名肥胖女性,14周减去内脏脂肪36.4%、皮下脂肪23.7%[14];Thong等人2000年:14名肥胖男性,12周减去内脏脂肪25.2%、皮下脂肪15.7%[15];Tiikainen等人2003年:11名肥胖女性,17周减去内脏脂肪23%、皮下脂肪13%[16];Tiikainen等人同年的另一项研究中12名肥胖女性,17周减去内脏脂肪29%、皮下脂肪14%[16];ROSE等人2000年:14名肥胖男性,13周减去内脏脂肪28.1%、皮下脂肪15.6%[17];Gambinery等人2003年:7名肥胖女性,26周减去内脏脂肪18.8%、皮下脂肪8.4%[18];采用节食加运动的研究,结论也类似:
Park等人2004年:47名肥胖者,12周减去内脏脂肪23.8%、皮下脂肪19.9%[19];Nakamura等人2000年:60名肥胖女性,13周减去内脏脂肪12.5%、皮下脂肪8.9%[20];Park等人2005年:36名肥胖女性,12周减去内脏脂肪22.5%、皮下脂肪14.8%[21];Okura等人2005年:71名肥胖女性,14周减去内脏脂肪39%、皮下脂肪24%[22];Pare等人2001年:45名肥胖男性,52周减去内脏脂肪19.9%、皮下脂肪10.1%[23];采用节食加减肥药物的研究,依然支持上述结论:
Kelley等人2004年(奥利司他):19名肥胖者,26周减去内脏脂肪28%、皮下脂肪16%[24];Tiikk等人2004年(奥利司他):24名肥胖女性,21周减去内脏脂肪27%、皮下脂肪14%[25];Kim等人2004年(盐酸西布曲明):28名肥胖女性,12周减去内脏脂肪19.9%、皮下脂肪16.5%[26];Kamel等人2000年:17名肥胖男性(盐酸西布曲明),26周减去内脏脂肪37.5%、皮下脂肪24%[27];19名肥胖女性,26周减去内脏脂肪43.3%、皮下脂肪20.1[27];Yip等人2001年:20名肥胖女性(盐酸西布曲明),24周减去内脏脂肪%35.5、皮下脂肪%26.2[28];总之,不管是节食、运动、药物等一切减肥方式(还有胃部手术的没放上来),『减肥过程中内脏脂肪一般比皮下脂肪消耗更多』,所以人体消耗脂肪,是有部位的优先级的。
二、同样是人身上的肥肉,『脂肪』和『脂肪』是不同的按颜色,人体脂肪可以分白色脂肪和棕色脂肪[29][30],以及可以演化成棕色脂肪的米色脂肪[31];按部位,脂肪有皮下、内脏、骨骼肌内脂、心肌脂等。
脂肪组织不仅是脂肪滴的容器,也是调节内分泌的器官。脂肪细胞中富含神经、血管和各种结缔组织[32],能分泌多种细胞因子,调节食欲、能量代谢、免疫功能和生殖[33];
皮下脂肪和内脏脂肪都是白色脂肪组织,但它们具有不同的作用(如内分泌)。皮下脂肪分泌瘦素,对健康可能更有益或者至少无害[34],而内脏脂肪分泌各种促炎物质,如白介素IL-6、C-反应蛋白CRP[33]等,它们与代谢综合征有关[35][36][37][38][39][40]。
说个题外话,皮下脂肪和内脏脂肪的代谢特性差异,也造成了绝经前女性的代谢疾病率明显低于男性[41][42][43][44][45][46][47];并且即便男性和女性的身体脂肪总量相等这种疾病率差异依然存在[48][49]。这主要因为雌激素把脂肪从『内脏』向『腿皮下』“转移”[50][51][52][53][54][55],如果全身脂肪总量相同,男性的内脏脂肪量可能是女性的2倍[56]。
雌激素与脂肪分布
内脏和皮下脂肪脂肪的代谢特性也有不同。Virtanen等人通过同位素标记的葡萄糖,证明了内脏脂肪对葡萄糖的摄取明显高于皮下脂肪[57];Andersson等人让受试者口服了带有同位素标记的甘油三酯,发现内脏脂肪(腹腔网膜)对甘油三酯的摄取显著高于皮下脂肪50%以上[58]。
三、相对而言,内脏脂肪更容易被释放、被身体利用这不是什么新鲜观点,早就是主流结论了。最典型的是Robert等人2007年发表在权威期刊《Diabetes》上的研究,用碳14同位素标记方法追踪来自内脏和非内脏脂肪酸[59]。
封面
这篇论文包含了AB两个研究。
A研究中,内脏脂肪酸释放为60±7%,非内脏脂肪酸释放24±6%;B研究中内脏脂肪酸释放为54±3%,非内脏脂肪酸释放16±5%。这些数据很好的说明了内脏脂肪具有更强的代谢活跃性,更容易被摄取和利用。
内脏脂肪酸释放(白)VS非内脏脂肪酸释放(黑)
1991年,Jensen等人也用上述方法观察研究了20名女性(8人上身肥胖/6人下身体肥胖/6人不肥胖)餐后脂肪酸的总释放情况[60]:
上身肥胖者的脂肪酸释放为161±16微摩/分钟;下身肥胖者的脂肪酸释放为为为111+/-9微摩/分钟;非肥胖者的脂肪酸释放为为92+/-9微摩/分钟。同位素标记追踪的结果证明了腿部脂肪释放的脂肪酸明显少于内脏脂肪。Guo等人也用类似方法,研究了8名上身肥胖和下身肥胖的女性餐后脂肪酸的代谢,发现了内脏脂肪和下半身堆积的脂肪,在餐后脂肪酸流量方面有显著差异[61]。
上身肥胖组的女性内脏脂肪酸释放流为275±45微摩尔/分钟;下半身肥胖组的女性内脏脂肪酸释放流为88±24微摩尔/分钟。这些数据证明了内脏脂肪的代谢流动性明显高于皮下脂肪,优先被释放,优先被消耗。
类似的研究不少[62][63][64][65],结论从性质上相似,就不挨个细说了。总之,内脏脂肪酸的代谢活跃性相对于其他部位更强、更容易被释放出来利用。
这也解释了为什么,很多女生发现减肥初期肚子减得最明显,胸和屁股减得少一些,减肥之后形体得到了美化,腰臀比降低了。
四、内脏脂肪对脂解激素的敏感性更高脂解激素,指的是人体处于禁食、运动或能量不足的状态时器官分泌一些激素。
这些激素从器官(肾脏、胰腺等)被释放,随血液运输到脂肪细胞,与其表面的受体结合,然后引发一系列反应,让脂肪细胞中的脂肪酸被释放出来,供各器官和大脑使用。
典型的脂解激素有胰高血糖素[66]、肾上腺素[67]和去甲肾上腺素[68]等;其中,肾上腺素被认为是最主要的一种。
脂解激素
内脏脂肪对脂解激素更敏感,跟受体有很大关系。
Jeong等人研究了女性皮下(大腿/腹部)和内脏(腹腔网膜)脂肪,发现内脏脂肪细胞与皮下脂肪细胞表面的脂解激素(如肾上腺素)的受体位点数量、分布都有差异[69]:皮下脂肪细胞上的脂解激素(肾上腺素)受体β数量比α-2要少,而内脏脂肪细胞上的β受体跟α-2一样多。
1990年,Arner等人研究了32名非肥胖男女腹部和臀部脂肪细胞中β肾上腺素受体,发现腹部脂肪细胞上的β肾上腺素受体数量几乎是臀部脂肪细胞上的2倍,而且腹部脂肪细胞上的肾上腺素受体β1、β2、β3[70]十分活跃。这可在很大程度上解释内脏脂肪细胞对脂解激素的敏感反应和优先燃烧。
当然,既然有脂解,也就有抗脂解。顾名思义,抗脂解就是对抗脂肪分解,“把脂肪酸关在脂肪细胞里不让它跑出来被燃烧”。
Arner等人还报道说,抗脂解激素(如胰岛素)的受体,在皮下脂肪更活跃[70],但在内脏脂肪细胞中不活跃[71][72]。因此抗脂解激素很难把内脏脂肪制约在脂肪细胞中,结果内脏脂肪容易不受管控的逸出,在供能上优先级较高。
作为一个典型证据,Meek等人对26人注射胰岛素后,腿部皮下脂肪组织的脂肪酸释放几乎完全被制止,而内脏脂肪依然在释放脂肪酸(虽然减少了65%)[73]。
打个有趣的彼方,就像现在疫情来了要封闭清零:
脂肪酸像是居民,腿臀部和内脏就是不同的小区;脂解激素有点像快递员,他们要让小区居民出来拿快递;抗脂解激素就是负责封闭小区的居委会,不让小区居民出来;腿臀部小区居民比较听居委会的话,对外卖的诱惑视若无睹,老老实实待在家里;内脏小区居民不太听居委会话,对快递员很热情,总是跑到外面去拿快递。
五、内脏脂肪的供能优先级:地理位置优势
我们已经知道,在禁食/饥饿/运动/能量不足期间,肾脏/胰腺等器官分泌脂解激素作用于脂肪细胞,释放脂肪酸出来供身体使用。
但是释放的脂肪酸,并不是直接到了各种器官,而是先去肝脏。Michele等人报告[74]在禁食/能量不足状态下,脂肪细胞释放的脂肪酸(至少大部分)先到肝脏,再到肌肉和其他组织。脂肪细胞为什么会开始释放脂肪酸?我们刚刚解释过,脂解激素刺激。
把两张图拼起来就是这样:
粗略框架
这样,整个流程就大体上完整了。所以我们应该清楚,脂肪组织释放的脂肪酸,并不是直接去了肌肉/其他器官,而是先去了肝脏,在肝脏合成TG(甘油三酯),然后再送往肌肉/其他器官。
因为肝脏是能量代谢的中心[74][75]。
这和我们的主题(内脏脂肪供能的优先级)有什么关系?答案是,相比大腿而言,内脏脂肪离肝脏近,向肝脏供能便捷——门静脉[76][77][78]。
门静脉
虽然这种说法听起来有点像地摊文学,但确实在许多科学文献都有提及:『门静脉理论』[79][80]。即:因为网膜、肠系膜等内脏脂肪组织的血管直接连入门静脉,可以将大量的脂肪酸释放到门静脉中,门静脉的脂肪酸浓度可显著高于动脉脂肪酸浓度,使肝脏沐浴在高浓度的脂肪酸流中[81][82]。
Soren等人早在2004年就证明[83]:男性和女性受试者的内脏脂肪越多(越胖),肝脏得到的脂肪酸中,来自内脏脂肪的比例就越高。
男性和女性受试者从内脏脂肪组织脂解产生脂肪酸,向肝脏输送的百分比
Soren等人的研究是一个强有力的证据,证明了餐后内脏肥胖的人的肝脏暴露于更高浓度的游离脂肪酸。这也解释了为什么内脏脂肪在供能上,相对于大腿/皮下脂肪,具有更高的优先级。
总之,减肥一定是先减内脏脂肪、或者说内脏脂肪动用比例较大的。
References1. ^Okura T, Nakata Y, Tanaka K. Effects of exercise intensity on physical fitness and risk factors for coronary heart disease. Obes Res 2003; 11: 1131–1139.
2. ^ Weinsier RL, Hunter GR, Gower BA, Schutz Y, Darnell BE, Zuckerman PA. Body fat distribution in white and black women: different patterns of intraabdominal and subcutaneous abdominal adipose tissue utilization with weight loss. Am J Clin Nutr 2001; 74: 631–636.
3. ^Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 2004; 27: 33–40.
4. ^Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res 2004; 12: 789–798.
5. ^Weinsier RL, Hunter GR, Gower BA, Schutz Y, Darnell BE, Zuckerman PA. Body fat distribution in white and black women: different patterns of intraabdominal and subcutaneous abdominal adipose tissue utilization with weight loss. Am J Clin Nutr 2001; 74: 631–636.
6. ^ Gower BA, Weinsier RL, Jordan JM, Hunter GR, Desmond R. Effects of weight loss on changes in insulin sensitivity and lipid concentrations in premenopausal African American and White women. Am J Clin Nutr 2002; 76: 923–927.
7. ^ Pasquali R, Gambineri A, Biscotti D, Vicennati V, Gagliardi L, Colitta D et al. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab 2000; 85: 2767–2774.
8. ^Alvarez GE, Davy BM, Ballard TP, Beske SD, Davy KP. Weight loss increases cardiovagal baroreflex function in obese young and older men. Am J Physiol Endocrinol Metab 2005; 289: E665–E669.
9. ^Rice B, Janssen I, Hudson R, Ross R. Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 1999; 22: 684–691.
10. ^Weits T, van der Beek EJ, Wedel M, Hubben MW, Koppeschaar HP. Fat patterning during weight reduction: a multimode investigation. Neth J Med 1989; 35: 174–184.
11. ^Okura T, Tanaka K, Nakanishi T, Lee DJ, Nakata Y, Wee SW et al. Effects of obesity phenotype on coronary heart disease risk factors in response to weight loss. Obes Res 2002; 10: 757–766
12. ^Fujioka S, Matsuzawa Y, Tokunaga K, Kawamoto T, Kobatake T, Keno Y et al. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. Int J Obes 1991; 15: 853–859.
13. ^Janssen I, Ross R. Effects of sex on the change in visceral, subcutaneous adipose tissue and skeletal muscle in response to weight loss. Int J Obes Relat Metab Disord 1999; 23: 1035–1046.
14. ^Tchernof A, Nolan A, Sites CK, Ades PA, Poehlman ET. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 2002; 105: 564–569.
15. ^Thong FS, Hudson R, Ross R, Janssen I, Graham TE. Plasma leptin in moderately obese men: independent effects of weight loss and aerobic exercise. Am J Physiol Endocrinol Metab 2000; 279: E307–E313.
16. ^abTiikkainen M, Bergholm R, Vehkavaara S, Rissanen A, Hakkinen AM, Tamminen M et al. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 2003; 52: 701–707.
17. ^Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al. Reduction in obesity and related comorbid conditions after dietinduced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 2000; 133: 92–103.
18. ^Gambineri A, Pagotto U, Tschop M, Vicennati V, Manicardi E, Carcello A et al. Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome. J Endocrinol Invest 2003; 26: 629–634.
19. ^Park HS, Sim SJ, Park JY. Effect of weight reduction on metabolic syndrome in Korean obese patients. J Korean Med Sci 2004; 19: 202–208.
20. ^Nakamura M, Tanaka M, Kinukawa N, Abe S, Itoh K, Imai K et al. Association between basal serum and leptin levels and changes in abdominal fat distribution during weight loss. J Atheroscler Thromb 2000; 6: 28–32.
21. ^ Park HS, Lee K. Greater beneficial effects of visceral fat reduction compared with subcutaneous fat reduction on parameters of the metabolic syndrome: a study of weight reduction programmes in subjects with visceral and subcutaneous obesity. Diabet Med 2005; 22: 266–272.
22. ^Okura T, Nakata Y, Lee DJ, Ohkawara K, Tanaka K. Effects of aerobic exercise and obesity phenotype on abdominal fat reduction in response to weight loss. Int J Obes (London) 2005; 29: 1259–1266.
23. ^Pare A, Dumont M, Lemieux I, Brochu M, Almeras N, Lemieux S et al. Is the relationship between adipose tissue and waist girth altered by weight loss in obese men? Obes Res 2001; 9: 526–534.
24. ^Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 2004; 27: 33–40.
25. ^ Tiikkainen M, Bergholm R, Rissanen A, Aro A, Salminen I, Tamminen M et al. Effects of equal weight loss with orlistat and placebo on body fat and serum fatty acid composition and insulin resistance in obese women. Am J Clin Nutr 2004; 79: 22–30.
26. ^Kim DM, Yoon SJ, Ahn CW, Cha BS, Lim SK, Kim KR et al. Sibutramine improves fat distribution and insulin resistance, and increases serum adiponectin levels in Korean obese nondiabetic premenopausal women. Diabetes Res Clin Pract 2004; 66 (Suppl 1): S139–S144.
27. ^abKamel EG, McNeill G, Van Wijk MC. Change in intra-abdominal adipose tissue volume during weight loss in obese men and women: correlation between magnetic resonance imaging and anthropometric measurements. Int J Obes Relat Metab Disord 2000; 24: 607–613.
28. ^Yip I, Go VL, Hershman JM, Wang HJ, Elashoff R, DeShields S et al. Insulin–leptin–visceral fat relation during weight loss. Pancreas 2001; 23: 197–203.
29. ^nnon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological reviews. 2004;84:277–359.
30. ^Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387:90–94.
31. ^Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, "brite," and white adipose tissues. American journal of physiology Endocrinology and metabolism. 2012;302:E19–31.
32. ^Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2010b;34(Suppl 1):S36–42.
33. ^abTrujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr.Rev. 2006;27:762–778.
34. ^Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: mplication of depot differences in adipose tissue for obesity complications. Molecular aspects of medicine. 2013;34:1–11.
35. ^ Bjorntorp P. Metabolic implications of body fat distribution.Diabetes Care 1991; 14: 1132±1143.
36. ^Kissebah AH, Videlingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982;54:254-60.
37. ^Abate N, Garg A, Peshock RM, StrayGundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995;96: 88-98.
38. ^Planas A, Clará A, Pou JM, et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men. Int J Obesity 2001;25:1068–70
39. ^Kete I, Mariken, Volman M, et al. Superiority of skinfold measurements and waist over waist-to-hip ratio for determination of body fat distribution in a population-based cohort of Caucasian Dutch adults. Eur J Endocrinol 2007;156:655–61.
40. ^Alexander JK. Obesity and coronary heart disease. Am J Med Sci 2001;321:215–24.
41. ^Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390
42. ^Wingard DL, Suarez L, Barrett-Connor E (1983) The sex differential in mortality from all causes and ischemic heart disease. Am J Epidemio1117:165-172
43. ^Freedman DS, Jacobsen S J, Barboriak JJ et al. (1990) Body fat distribution and male/female differences in lipids and lipoproteins. Circulation 81:1498-1506
44. ^Larsson B, Bengtsson C, Bj6rntorp Pet al. (1992) Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial infarction? Am J Epidemio1135: 266-273
45. ^Seidell JC, Cigolini M, Charzewska Jet al. (1991) Fat distribution and gender differences in serum lipids in men and women from four European communities. Atherosclerosis 87:203-210
46. ^Despr6s JR Moorjani S, Fefland Met al. (1989) Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 9:203-210
47. ^Despr6s JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10: 497-511
48. ^ Despr6s JP, Allard C, Tremblay A, Talbot J, Bouchard C (1985) Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism 34:967-973
49. ^Krotkiewski M, Bj6rntorp P, Sj6strOm L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72: 1150-1162
50. ^Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.
51. ^Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983;72:1150–62.
52. ^Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004;5:197–216.
53. ^Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390
54. ^Kvist H, Chowdury B, Gang~rd U, Tyl6n U, Sj6str0m L (1988) Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48:1351-1361
55. ^SjOstr6m L, Kvist H (1988) Regional body fat measurements with computed tomography-scan and evaluation of anthropometric predictions. Acta Med Scand [Suppl] 723:169-177
56. ^Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Despr6s JP (1993) Sex differences in the relation of visceral adipose tissue to total body fatness. Am J Clin Nutr 58:463-467
57. ^Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002
58. ^Mårin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, et al. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism. 1992
59. ^Nelson RH, Basu R, Johnson CM, Rizza RA, Miles JM. Splanchnic spillover of extracellular lipase-generated fatty acids in overweight and obese humans. Diabetes. 2007;56:2878–2884.
60. ^Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. J. Clin. Invest. 1991;88:609–613.
61. ^Guo ZK, Hensrud DD, Johnson CM, Jensen MD. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes. 1999;48:1586–1592.
62. ^Jensen MD. Gender differences in regional fatty acid metabolism before and after meal ingestion. J. Clin. Invest. 1995;96:2297–2303.
63. ^Jensen MD, Johnson CM. Contribution of leg and splanchnic free fatty acid (FFA) kinetics to postabsorptive FFA flux in men and women. Metabolism. 1996;45:662–666.
64. ^Basu A, et al. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2001;280:E1000–E1006.
65. ^Meek S, Nair KS, Jensen MD. Insulin regulation of regional free fatty acid metabolism. Diabetes. 1999;48:10–14.
66. ^Birbrair A., Zhang T., Wang Z.M., Messi M.L., Enikolopov G.N., Mintz A., Delbono O. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22:2298–2314.
67. ^Lafontan M., Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 2009;48:275–297.
68. ^Jaworski K., Sarkadi-Nagy E., Duncan R.E., Ahmadian M., Sul H.S. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G1–G4.
69. ^ Mi-Jeong Lee,Susan K. Fried.Depot-Specific Biology of Adipose Tissues: Links to Fat Distribution and Metabolic Risk.Book Editor(s):Todd Leff,James G. Granneman.
70. ^abP Arner 1.Differences in lipolysis between human subcutaneous and omental adipose tissues.Ann Med. 1995 Aug;27(4):435-8.
71. ^Leibel RL, Edens NK, Fried SK. Physiologic basis for the control of body fat distribution in humans. Annu.Rev.Nutr. 1989a;9:417–443.
72. ^Lonnqvist F, Thorne A, Large V, Arner P. Sex differences in visceral fat lipolysis and metabolic complications of obesity. Arterioscler.Thromb.Vasc.Biol. 1997;17:1472–1480.
73. ^Meek SE, Nair KS, Jensen MD. Insulin regulation of regional free fatty acid metabolism. Diabetes. 1999;48:10–14.
74. ^abMichele Alves-Bezerra and David E. Cohen.Triglyceride metabolism in the liver.Compr Physiol. Author manuscript; available in PMC 2019 Feb 15.
75. ^Vasconcellos R, Alvarenga EC, Parreira RC, Lima SS, and Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 28: 1773–1788, 2016.
76. ^Antonio Manenti 1, Gianrocco Manco 2, Alberto Farinetti 2, Luca Roncati 3.The intrahepatic branches of portal vein: a relevant surgical topic.Surgery. 2021 May;169(5):1265.
77. ^ Z C Edelson.Preduodenal portal vein.Am J Surg. 1974 May;127(5):599-600.
78. ^Connie Ju , Xin Li , Sameer Gadani , Baljendra Kapoor , Sasan Partovi.Pfortaderthrombose: Diagnose und endovaskuläres Management.Portal Vein Thrombosis: Diagnosis and Endovascular Management.
79. ^Bjorntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes.
80. ^R N Bergman 1.Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein?.Diabetologia. 2000 Jul;43(7):946-52.
81. ^Michael D. Jensen.Role of Body Fat Distribution and the Metabolic Complications of Obesity.J Clin Endocrinol Metab. 2008 Nov; 93(11 Suppl 1): S57–S63.
82. ^J Svedberg, G Strömblad, A Wirth, U Smith, and P Björntorp.Fatty acids in the portal vein of the rat regulate hepatic insulin clearance.J Clin Invest. 1991 Dec; 88(6): 2054–2058.
83. ^Soren Nielsen,1 ZengKui Guo,1 C. Michael Johnson,2 Donald D. Hensrud,1 and Michael D. Jensen1.Splanchnic lipolysis in human obesity.J Clin Invest. 2004 Jun 1; 113(11): 1582–1588.
84. ^eters S. J., Dyck D. J., Bonen A., Spriet L. L. Effects of epinephrine on lipid metabolism in resting skeletal muscle. The American Journal of Physiology. 1998;275(2 Part 1):E300–E309.
85. ^Dyck D. J., Bonen A. Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. The American Journal of Physiology. 1998;275(5 Part 1):E888–E896.
86. ^Peters S. J., Dyck D. J., Bonen A., Spriet L. L. Effects of epinephrine on lipid metabolism in resting skeletal muscle. The American Journal of Physiology. 1998;275(2 Part 1):E300–E309.
87. ^Dyck D. J., Bonen A. Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. The American Journal of Physiology. 1998;275(5 Part 1):E888–E896.
88. ^alanian J.L., Tunstall R.J., Watt M.J., Duong M., Perry C.G.R., Steinberg G.R., Kemp B.E., Heigenhauser G.J.F., Spriet L.L. Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the onset of exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:1094–1099.
89. ^Jocken J.W., Blaak E.E. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Physiol. Behav. 2008;94:219–230.
90. ^Holm C., Osterlund T., Laurell H., Contreras J.A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 2000;20:365–393.
91. ^Shen W.J., Patel S., Natu V., Kraemer F.B. Mutational analysis of structural features of rat hormone-sensitive lipase. Biochemistry. 1998;37:8973–8979.
92. ^Zimmermann R., Strauss J.G., Haemmerle G., Schoiswohl G., Birner-Gruenberger R., Riederer M., Lass A., Neuberger G., Eisenhaber F., Hermetter A., et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–1386.
93. ^Villena J.A., Roy S., Sarkadi-Nagy E., Kim K.H., Sul H.S. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: Ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 2004;279:47066–47075.
94. ^Roepstorff C., Vistisen B., Kiens B. Intramuscular triacylglycerol in energy metabolism during exercise in humans. Exerc. Sport Sci. Rev. 2005;33:182–188.
95. ^Vaughan M, Berger JE, Steinberg D 1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239: 401–409
96. ^Petridou A., Chatzinikolaou A., Avloniti A., Jamurtas A., Loules G., Papassotiriou I., Fatouros I., Mougios V. Increased triacylglycerol lipase activity in adipose tissue of lean and obese men during endurance exercise. J. Clin. Endocrinol.
97. ^Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW 2004. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279: 48968–48975
98. ^Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A 2009. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50: 3–21
99. ^Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, et al. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383–1386
100. ^Eichmann TO, Kumari M, Haas JT, Farese RV Jr, Zimmermann R, Lass A, Zechner R 2012. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 287: 41446–41457
101. ^Vaughan M, Berger JE, Steinberg D 1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239: 401–409
102. ^Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R 2002. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277: 4806–4815
103. ^Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R 2006. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281: 40236–40241
104. ^Morley N, Kuksis A 1972. Positional specificity of lipoprotein lipase. J Biol Chem 247: 6389–6393
105. ^ogalska E, Cudrey C, Ferrato F, Verger R 1993. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5: 24–30
106. ^Bertrand T, Auge F, Houtmann J, Rak A, Vallee F, Mikol V, Berne PF, Michot N, Cheuret D, Hoornaert C, et al. 2010. Structural basis for human monoglyceride lipase inhibition. J Mol Biol 396: 663–673
107. ^Ranallo R.F., Rhodes E.C. Lipid metabolism during exercise. Sports Med. 1998;26:29–42.
108. ^Campbell J, Martucci AD, Green GR. Plasma albumin as an acceptor of free fatty acids. Biochem J. 1964;93:183–189.
109. ^Miller N.E. HDL metabolism and its role in lipid transport. Eur. Heart J. 1990;11:1–3.
110. ^Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda) 2006;21:259–268.
111. ^Gimeno RE, Ortegon AM, Patel S, et al. Characterization of a heart-specific fatty acid transport protein. J Biol Chem. 2003;278:16039–16044.
112. ^Schaap FG, Binas B, Danneberg H, van der Vusse GJ, Glatz JF. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res. 1999;85:329–337.
113. ^Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci. 2002;967:217–235.
114. ^Harasim E., Kalinowska A., Chabowski A., Stepek T. The role of fatty-acid transport proteins (FAT/CD36, FABPpm, FATP) in lipid metabolism in skeletal muscles. Postepy Higieny Medycyny Doswiadczalnej. 2008;62:433–441.
115. ^Bruce CR, Brolin C, Turner N, Cleasby ME, van der Leij FR, Cooney GJ, Kraegen EW. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. Am J Physiol Endocrinol Metab. 2007;292:E1231–1237.
116. ^Monaco C., Whitfield J., Jain S.S., Spriet L.L., Bonen A., Holloway G.P. Activation of AMPKα2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS ONE. 2015;10:e0126122.
117. ^van der Leij FR, Huijkman NC, Boomsma C, Kuipers JR, Bartelds B. Genomics of the human carnitine acyltransferase genes. Mol Genet Metab. 2000;71:139–153.
118. ^Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25:495–520.
119. ^McGarry J.D., Brown N.F. The mitochondrial carnitine palmitoyltransferase system. Eur. J. Biochem. 1997;244:1–14.
120. ^Holloway G.P., Bezaire V., Heigenhauser G.J.F., Tandon N.N., Glatz J.F.C., Luiken J.J.F.P., Bonen A., Spriet L.L. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J. Physiol. 2006;571:201–210.
121. ^Houten S.M., Violante S., Ventura F.V., Wanders R.J. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 2016;78:23–44.
stochastic是sci几区?
stochastic是sci四区期刊。
期刊简称STOCHASTICS。影响因子0.515, 2015年6月21日更新。
学科分类:SCI应用数学(MATHEMATICS, APPLIED),SCI统计与概率(STATISTICS & PROBABILITY)。
官方网站:www.tandfonline.com/toc/lsaa20/current投稿网址:mc.manuscriptcentral.com/lsaa
火灾报警控制器显示反馈该怎么做?
火灾报警控制器的工作状态主要是正常监视状态,我在报警状态消音状态各类故障报警,状态屏蔽状态等火灾报警控制器通过音响声调字符数字显示器或液晶显示显示文字信息点亮指示灯作为当前状态的信息特征。
根据火灾报警控制器所显示的火灾的信息的情况进行分析识别确认。如果是火警立即拨打摇摇井扑救火灾。如果是故障或者是误报和线路问题进行工程维修。
常听英文歌的孩子?
都是我自己整理并喜欢的,很多都很经典,一二首就很不错,有空听下,肯定有你满意的
◆tonyamitchell--stay(这首stay是80年代的民谣的翻唱版本,年仅18岁的少女演唱,贯穿全曲的吉他,优美的编曲和和声,使得这首歌充满了浓浓的情谊和忧伤.静静的夜,闭上眼睛细细倾听,莫名的伤感便涌上心头。。。
◆Akia-California(很性感的一首歌)◆timotolkki—areyoutheone(这首歌的歌词很美,旋律也很美,因爱受过伤害的人,他们的心灵是脆弱的,然而他们对爱仍然向往,向往却又怕伤害,这是一首会让我落泪的歌,areyouthe
one?thetravellerintimewhohascometohealmywoundstoleadmetothesuntowalkthispathwithmeuntiltheendoftime,是的,很想问一句,areyoutheone???)
◆有里知花--icry(轻柔的歌声在倾诉着什么,让人无法入眠..)
◆spicegirls--twobecomeone
辣妹组合的经典力作....已成绝响
◆nana--lonely(最经典的歌,要是不知道你就真的很落伍了)
◆michaelbolton--saidilovedyoubutiliedmichealbolton用略带沙哑却磁性十足的金嗓子,以一曲“saidilovedyoubutilied”《说我爱你……却是谎言》如泣如诉般演绎出痛砌入心
的思念,短暂离别而渴望相见的焦躁、无奈……
◆emilla--bigbigworld简单的歌词,却表达出的深厚的情意。tvb电视连续剧“刑事侦缉档案4”中常出现的背景曲,就是在讲由古天乐扮演的徐飞和其前女友的剧情中..
◆mariahcarrey--istillbelieve天后的倾情演唱,经典的情歌..
◆HelenaZetova——LoveMeAgain(令人动容的情歌)
◆PaulaDeAnda-GoodGirl(节奏蓝调小公主,一位甜而不腻的舒服新女声.)
◆alizee--moilolita(法国的艾莉婕我就不介绍了,美女一个,歌又好听。赞的人多。alizee的la_isla_bonita也很赞。)
◆sarahconnor-justonelastdance(第一遍好聽,第二遍,更好聽,第三遍,超好聽!!)
◆theweepies-gottahaveyou(品一口咖啡细细的细细的品味这首歌)
◆mariaarredondo-burning(或许你听过,但这确实是一首好歌)
◆MilkAndToastAndHoney(不能拒绝的前奏百听不厌)
◆starclubfeat.dr.alban-chikichiki(超好听的慢摇)
◆fortminor--believeme
◆sade --noordinarylove
◆bustarhymes-iknowwhatyouwant(与mariahcarey的合作,她那具有磁性的声音在这首歌中,尽显了她的sexy!)
◆AceOfBase-everytimeitrains(北欧的乐队总有一种清新的感觉)
◆laurapausin-it'snotgoodbye(意大利天后的作品,绝对的经典)
◆sclub7-neverhadadreamcometrue(很老的歌了,不知道為什麽今年才發現,囿種相逢恨晚的感覺)
◆mariahcarey-webelongtogether(這首歌對於常分開聽英文歌曲的朋友來說,應該吥陌生了吧)
◆jewel-stand(沒聽過這首歌啊,快聽聽吧!)
◆原子少女貓-nothingintheworld(這首歌很熟悉是不是,非主流的flash經常用這首歌)
◆kellyclarkson-becauseofyou(超級有感覺的,一開始聽到前奏就愛上了)
◆billiepinpe-somethingdeepinside(真是超不錯的!剛發現的,很新鮮哦!!)
◆bonnieraitt-cryonmyshoulder(一首聽了讓人覺得感動的情歌)
◆sarahconnor-loveiscolorblind(不記得這是第幾首sarahconnor的歌了,這歌不錯吖!)
◆sarahconnor-livingtoloveyou(真是太佩服這個女人了,怎么可以唱歌唱得那么好聽吖!)
◆jaonna-4thfjuly(比較傷感的,很不錯哦!想落淚吖,現在。。。)
◆marcterenci-lovetobelovedbyyou(據說這首歌是這個歌手在婚禮上唱給他的妻子聽的,真是個好男人,唱得那么動情)
◆GarethGates-anyoneofus(2003欧美销量冠军,可见实力)
◆celinedion-becauseyoulovedme(席琳狄翁歌很不错)
◆eminem-stan(好听!!!!!!!!!)
◆??????-givemeyourlovetonight(可不可以永远拥有你的爱呢????)
◆jackson-healtheworldmichael(爱好和平的人都要唱这歌,超值得一听,世界上最动听的歌)
◆highschoolmusical-startofsomethingnew(男女对唱的歌一般都很不错)
◆????-it'sok(节奏很HIGH,心随乐动)
◆jordanpruitt-inloveforaday(不错不错!!)
◆joyenriquez-losingthelove(总觉得这歌是翻唱中国谁的,但听起来很爽)
◆lenemarlin-sittingdownhere
◆lenemarlin-aplacenearby
◆HelenaZetova-lovemeagain(哭吧,继续哭!!)
◆mariahcarey-istillbelieve(哎,还有什么相信的呢,甜蜜的绝望了)
◆natashathomas-i'mjustalittlebitshy(汗!!!!!!!!!!)
◆??????????-One-TAndCool-T(做手机铃声不错!!)
◆??????????-saveyourkissesforme(KAO!!叼死)
◆bluefoundation-asimovedon(很叼!!!!!!!!!!!)
◆Alizee-laislaalizee(法国小天后确实不一般)
◆samanthamumba-alwayscomebacktoyourlove(反正就是好听)
◆Clemence&Jean-BaptisteMaunier-concertopourdeuxvoix(一直啊啊啊啊不停的,但是啊的很好啊)
◆lenemarlin-whatif(前奏很不错)
◆camilla-broken(韩国哪个老大唱的,很叼的)
◆billygilman-aboutmemories(记忆?都不想回忆了)
◆Overground-onefordamoney(非主流音乐)
◆alizee-i`mnottwenty(很有活力的歌)
◆babyface-loneliness
◆deltagoodrem-lostwithoutyou(不知道为什么,为什么有关这类型的歌我都喜欢听)
◆玛丽亚凯莉-throughtherain(很美的声音)
◆a-teens-firefly(哇!好强好爽)
◆bellefire-saysomethinganyway(很有感觉,LOVEMEDON'TSAYSORRY)
◆cascada-everytimewetouch(听着就想动起来)
◆leonalewis-betterintime(她的歌都不错的)
◆sarahconnor-waittilyouhere(那个谁翻唱这歌的真是LJ,玷污了这歌)
◆sarahconnor-bounce(没话说你,很好很强大)
◆jessemccartney-becauseyoulive(很好,但我的爱在哪呢?)
◆gwenstefani-inthemorning(很清新很舒服)
◆aviation-youweremyeverything(哇哇哇哇!!!)
◆JaciVelasquez-imaginemewithoutyou(没了你,我将[email=~!@#$%]~!@#$%[/email]^&* INEEDU)
◆dido-thankyou(3Q 3Q)
◆SisseMarie-InMyRoom(好听的要死)
◆cuntherandthesunshinegirls-likefiretonight(一開場就很有氣勢,讓人不覺沉淪。。)
◆yvonnecatterfeld-glaubanmich(好听,好听,就是好听,KAO,叼的不一般)
◆mariahcarey-byebye(呵呵,很有意思的歌)
◆??????-thetower(不知道该说什么了)
◆原子少女猫-thetideishigh(有趣,声音很棒)
◆sweetbox-killingmedj(噢!!MYGOD)
- 我的微信公众号
- 扫一扫关注
-
- 我的新浪微博号
- 扫一扫关注
-